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An iterative scheme for the nonlinear Neumann problem over a smooth bounded domain in 
R’ is studied. An equivalent system of coupled problems is obtained by the method of “Alter- 
native Problems.” A combination of the capacitance matrix method and one-dimensional 
nonlinear solver is then applied to this system yielding an efftcient numerical algorithm. 

1. INTRODUCTION 

In this paper, we study a numerical method for solving the nonlinear Neumann 
problem 

-Au + f(u) = g(x) in Q, 

au/an = h(s) on 6Y2, 
(1.1) 

where R is a smooth bounded domain in R2 (or R'), x E R, and f is an increasing 
function. We develop an iterative scheme which gives rise to a coupled system of 
equations. This system of equations is obtained by utilizing the fact that the nullspace 
of the Laplacian operator together with Neumann boundary conditions is generated 
by the constant functions. 

The nonlinear Neumann problem has been studied from the computational point of 
view in [ 10, 131. In [IO] Keller discusses monotone convergence and related methods 
for nonlinear Neumann problems. The problem has also been studied in [20] by 
using the M-matrix nature of the discrete problem. In this paper, we proceed in a 
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different direction. Using the method of “Alternative Problems” we decompose the 
nonlinear problem (1.1) into a system of two equations: one on the range of -Au and 
the other on the kernel that is one dimensional. We then introduce the iterative 
procedure that follows the lines of [3]. As starting points for the iterative process we 
use upper and lower solutions of (1.1) and finding these in an integral part of the 
process. This iterative scheme enables us to use a fast-solver capacitane matrix 
method [ 191 for the equation on the range and a one-dimensional nonlinear solver ] 1 ] 
for the equation on the nullspace. Numerical experiments have demonstrated the 
computational efficiency of this procedure. In further sections we shall outline this 
method. It should be noted that a discretization by a finite difference method gives 
rise to a problem in R” of the type 

Au + F(u) = G, 

where A is a n x n singular matrix and F: R” + R ’ is a nonlinear transformation. 
Solving the problem over the range and kernel separately enables us to verify the 
Fredholm consistency conditions at each stage of the iterative process. Finally, it 
must be noted that splitting the nonlinear problem into problems over the range and 
kernel gives rise to a linear problem on the range at each stage of the iterative 
process. We are now in a position to apply the capacitance matrix method to solve 
the nonlinear problem on irregular bounded domains. 

The results of the numerical experiments are also compared with the results 
obtained with an extension of the scheme suggested by Keller ]9] and Pennline ] 15 ] 
for ODES, which uses the displacement of the operator d’/dx’. In this paper we 
illustrate only numerical examples and continue further theoretical investigations 
elsewhere. 

2. PRELIMINARIES 

In this section we outline the four concepts used in the iterative schemes: (i) Alter- 
native Problems, (ii) Capacitance matrix method, (iii) the ZEROIN procedure, and 
(iv) the scheme to improve the rate of convergence. 

(i) The nonlinear problem (1.1) can be written as an operator equation 

Eu = Nu, 

where N is the nonlinear Nemitskii operator generated by g(x) -f(u) and E is the 
linear differential operator generated by -A together with the Neumann boundary 
conditions. We assume, for the sake of simplicity, that f is a sufficiently smooth 
function. Clearly, if u E L’(a) is a solution to the above problem, then we must have 

(_ [f(u) - g(x)] dx + 1‘ h(s) ds = 0. (2.1) 
-n -PO 
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This motivates the use of the method of “Alternative Problems” [ 131. Thus, for any 
u E L’(B) we define 

Pu = l//J2 1 / U(X) dx. 
‘R 

We then obtain a splitting of L’(s) as the direct sum of two orthogonal closed linear 
subspaces S, and S, where P: L*(a) --) S, is the idempotent projection operator 
defined above. Looking for a solution u E L*(n) of the nonlinear problem (1.1) is 
thus equivalent to finding u E S,, w E S, such that u = L’ + MI satisfies 

Ew=(Z-P)N(v+w), 

0 = PN(u + w). 

In terms of (1.1) these two equations are thus reduced to the system 

-Aw = (I - P)[-f(, + w) + g(x)] in R, 

aw/an = h(s) on 8R, 
(2.2) 

and 

0 = P[-f(v + w) + g(x)]. (2.3) 

The existence of a solution of this equivalent system of equations and hence of 
problem (1.1) may be seen in [4]. 

In [lo], Keller proves the existence of a solution of (1.1) by applying the method 
of upper and lower solutions. Thus, if p,, and q. are upper and lower solutions, i.e., 

-% > -fhJ + g(x)v 

aP,/an > h 

(with similar, but reversed inequalities for q,,), then Keller [lo] proves that (1.1) has 
at least one solution U(X) satisfying qo(x) < U(X) ,< p&), x E fin. In addition, various 
iterative schemes using the upper and lower solutions are derived in [ lo]. 

(ii) The iterative scheme for Eqs. (2.2) and (2.3) that is proposed in the next 
section involves solving linear Neumann problems on irregular bounded smooth 
domains. The method utilized in this paper for such problems is the capacitance 
matrix matrix method. 

The capacitance matrix method (CMM) is an extension of the Fast Helmholtz 
Solvers (FHS) to arbitrary bounded regions. A FHS is a solver for the equation 

-Au + cu = f in Q, 

with proper boundary conditions on aR, where c is a constant. It is usually based on 
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Fast Fourier Transform or cyclic reductions (or both) and is used only for regions 
which are rectangular after a possible change of variables. 

The FHS produces a solution at a cost proportional to N log N arithmetic 
operations and using N storage locations, where N is the member of mesh points 
inside the region. 

The CMM can be viewed and described in two different ways: (a) algebraic and 
(b) potential-theoretic. In (a) the CMM solution is obtained as a solution to a 
problem which is a low rank modification of the problem on a rectangle in which the 
arbitrary region is embedded. The low rank modification is expressed in terms of the 
Woodbury formula and its generalizations [2]. On the other hand, in (b) the original 
problem (1.1) is reduced to solving a Fredholm integral equation of the second kind 
(of dimensionality one less than the original problem) [ 191. Similar formulations are 
widely used in integral equation techniques. In contrast, in CMM one does not use 
expansive quadrature rules, but one works implicitly with the discrete Green’s 
function generated by a FHS. At first the CMM was presented in terms of potentials 
and electrodes [6]. Then an algebraic development took place [ 21 followed by a 
series of papers in which the spectral structure of the integral operators was utilized 
[ 191. For a recent survey of the iterative variants of CMM, see [ 171. Such solvers 
have modest storage requirements (of fl locations for the solution and several 
vectors of length N) and a total computational expense of the order of 10 calls of a 
FHS. The currently available package program for either the Dirichlet or Neumann 
problems is described in [ 181. 

(iii) Our iterative scheme for Eq. (2.3) involves locating a zero of a single-valued 
real function. The solver utilized in this paper is ZEROIN [ 1. 5 1. This program 
requires that two points be given where the function values are of opposite signs. The 
method is a combination of the bisection and secant methods. Besides being globally 
convergent, the method is at worst linearly convergent (bisection) and for smooth 
functions it has the speed of the secant method. The choice of the two starting points 
for our problem is discussed in Section 3. 

(iv) We also study an extension to PDEs of a scheme discussed by Keller for 
ODES [9], and its variant due to Penniine [ 151. Briefly stated, this scheme involves 
displacing the linear part of (1.1) by cu and thereby generates an iterative scheme 
based on the contraction mapping theorem. Thus the iterative scheme reduces to 

-A%+, +%l+, = -.w + CUtI + g(x) 

a?$+,/an = h(s) on &?, 

and thus can be written as 

in R, 
(2.4) 

u “+,=L;‘N u c n, 

where L is the operator -A + cl together with the boundary conditions. By an 
appropriate choice of c, the operator L; ‘NC becomes a contraction over some 
suitable bounded closed convex set and thus the iterations (2.4) converge. 
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3. ITERATIVE PROCEDURES FOR THE NONLINEAR PROBLEM 

As in Section 2, the nonlinear problem (1.1) can be written as an equivalent system 
of Eqs. (2.2) and (2.3). In this section we will discuss a numerical procedure based on 
Eqs. (2.2) and (2.3). 

We first note that the subspace S, of L’(B) is one-dimensional. A natural iterative 
procedure generated by Eqs. (2.2) and (2.3) is as follows: let u,, E S, and w0 E S, be 
starting points for the sequences ( un}, (w,}. Then let v,+ , E S, and w,+, E S, be 
given by 

-Awn+, = (I- Pkf(W” + u,) + L?(x)1 in R, 

awn+,/an = h(s) on LX?, 
(3.1) 

and 

0 = p[-.(~7n+, + U”,,) + &)I. (3.2) 

We first discuss the existence of such a v, + , E S and w,+ , E S, . 
Note that by the Fredholm alternative, Eq. (3.1) is consistent and thus is uniquely 

solvable for u’,,+ , E S,. We now assume that f is an increasing function of its 
argument. Since L’,, , E R it follows that (3.2) would be solvable (and thus uniquely) 
provided we can find a,, b E R such that 

pi-f(wn+ I + 4 + g(x)1 and PI-f(wn + I + b) + g(x)1 (3.3) 

are of opposite signs. This property, namely, the existence of a, b E R, is required at 
each stage of the iterative process. Thus, if the nonlinear problem has upper and 
lower solutions then the iterative procedure by (3.1) and (3.2) is well defined. This 
may be seen from the fact that if A(x) is such thatf(A) > g(x) for all x in the domain 
then P[f(A) - g] > 0. Hence, if c E R is such that c > A(x), x E fi, then such a c can 
be utilized to generate upper and lower solutions at each stage of the iterative 
process, thereby finding the constants a and b required in (3.3). 

In [lo] Keller studied the iterative procedure 

-A%+ I + f(%) = g(x), 

b(s) u, + 1 + au,,+, /an = h(s), b(s) f 0, 
(3.4) 

and established that under suitable smoothness and growth hypotheses on f, the 
corresponding iterates u,(x) satisfy 

where U(X) is the solution to (1.1). However, the author states that the convergence of 
the alternating sequence (u,, (x)} is not proved in general. In [ 1 l] the convergence of 
such a sequence was established for a specific problem. It must be noted that (3.4) 
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and the system generated by (2.2) and (2.3) differ in that (3.4) does not include the 
case b(x) E 0, which is the problem studied in this paper. The convergence of the 
sequence {u,} = (0, + w,,} can be established from the increasing nature off. We 
present an outline of the proof here. 

The starting point (Us, M’,,) for our scheme can be obtained from the upper solution 
,4(x) of the original problem. Thus, u0 = PA(x), ).vO = (I - P) A(x). This choice of the 
starting point enables us to apply the variant of the maximum principle as derived in 
[lo]. Following the same lines of proof as in [lo] we can conclude that “I, < u’~. 
Regarding the bifurcation equation, we use a nonlinear solver referred to as the Brent 
procedure [5]. In order to utilize this procedure, for every n we need to obtain 
constants a and b such that P[-f(a + ~9,) + g(x)] and P[-f (b + MY,) + g(x)] are of 
opposite signs. As remarked before, one could use the upper and lower solutions of 
the nonlinear problem. However, in order to improve the procedure at each stage, we 
proceed as follows: we choose one endpoint a = u such that 

PI-f(a + ~7,) + g(x)] > 0 (or GO). 

Then the other endpoint b may also be obtained from 

b = a + P[-f(a + w,) + g(x)]. 

That b is a lower solution, i.e., P[ -f (b + n*,,) + g(x)] < 0, can be concluded from the 
following result in [ 14, p. 452 ]: let F: D c R” + R” be order-convex and Gateaux- 
differentiable on the convex set D, E D and suppose that there is a nonnegative 
CEL(R”) such that F’(x)C>Z, xED,. If Fy, > 0 and x = .1’ - CFy E D, then 
Fx, < 0. In our case, we treat F: R + R to be 

F(u) = PI-f(u + w,J + g(x)]. 

But this also implies that u,, which is obtained as the solution of 
P[-f(u + ~9,) + g(x)] = 0, satisfies v, < t’O so that we can conclude U, = t’, + M’, ,< 
u,=u,+r~,. Proceeding similarly one can show as in [IO] the alternating nature of 
the sequence {u,}. In order to show convergence of the entire sequence (u,} we show 
that the sequence (u,,} (and thus {uZn- ,}) is convergent. Finally, we show that the 
limits of {u,,,) and {nZn-, } are the same, thereby proving the convergence of {u,}. 
Noting that (u,,} is bounded we can conclude that (-f(u,,) + g) is bounded. One 
can then show that {u,,} is bounded in H,(Q) and thus there is a convergent subse- 
quence on L*(R). But (u2,,} being monotone, the entire sequence is convergent. 
Similarly {uZn- ,} is also convergent. We can now use the hypothesis that f is 
increasing to see that any solution to (1.1) is unique. This can be seen by an 
application of the maximum principle. One can also see uniqueness from the fact that 
if u and ~1 are two solutions of (1.1) then -(AU - dv) + (f(u) -f(u)) = 0. Taking L’- 
inner product with u - u, the uniqueness follows. 

We conclude the discussion on the above iterative scheme with a remark on the 
construction of upper and lower solutions. This problem in general is difficult to 
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resolve. However, in the specific examples of nonlinear functions that we study in this 
paper, we are able to obtain upper and lower solutions as follows: proceeding as in 
the literature on existence of solutions of these problems [4], we can show that there 
exist numbers R and r such that 

1’ ( 
-f R + w(x)) + g(x)] < 0 and 

R 
Jn [-.(-R + w(x)) + g(x)/ > 0 

for all (1 WI/ < r. Choosing 5~ = 0, for large R, we have -f(R) + g(x) < 0 and 
-f(-R) + g(x) > 0. We can then treat R and -R as upper and lower solutions since 

-W)+f(R)-g(x)>0 and -A(-R) + f(-R) - g(x) < 0. 

It must be noted here that the upper solution so obtained belongs to the kernel of the 
operator -A together with Neumann boundary conditions. This method has been 
utilized in the numerical examples. 

Algorithm (2.2)-(2.3) has also been utilized in [S] and [ 12 1 to study numerical 
methods for nonlinear elliptic problems by using other hypotheses on f that guarantee 
local convergence. 

We thus consider the iterative sequence (2.4). As in [ 15 1, the nonlinear functionf 
is assumed to satisfy 0 < 6 < df/du <N, i.e., f(u) satisfies a two-sided Lipschitz 
condition with constants 6 and N. One could then choose the displacement c to be 
(6 + N)/2 and ensure that the linear transformation -Au + cu together with Neumann 
boundary conditions is invertible. Furthermore, the right-hand side of the above linear 
problem satisfies a Lipschitz condition. It is easy to see (cf. 171) that for this choice 
of c we can (theoretically) transform the problem into an integral equation of the type 

u =L-‘[cu -f(u) + g(x)] = Tu, 

where L is the operator -A + cl together with Neumann boundary conditions. Then 
one can show that T is a strict contraction and this the sequence {u,, + , } converges to 
a solution of the original nonlinear problem. We would like to remark, however, that 
it is not essential that 0 < 6 < df/du. In other words, 6 and N could be negative, but 
in this case one has to ensure that for the choice of c = (6 + N)/2, the transformation 
L -’ can be defined. Finally, the linear problems at each stage of the iterative process 
can be treated efficiently with the use of fast solvers for Helmholtz equation, see 
[ 18, 221. This is an important factor in handling nonlinear PDEs. Details of these 
and related discussions will be published elsewhere. Some numerical examples are 
provided in this paper. 

4. EFFICIENCY OF THE NUMERICAL SCHEME 

The numerical scheme presented in the previous section is more general than its 
current implementation. Our choice was mainly guided by the available mathematical 
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software and simplicity of its application. Our aim was to develop a computationally 
efficient algorithm (without much effort to optimize it) which we now describe. 

We imbed the irregular region D in a contiguous rectangle R and impose a uniform 
square mesh with the step size h. We denote the number of mesh points inside the 
rectangle by N, N = nm, where n and m are the number of mesh points in R in both 
coordinate directions. In each iteration we solve successively (3.1) and (3.2). 

The discrete analogue of the auxiliary equation (3.1) has the same consistency 
properties as (3.1). Thus a properly chosen quadrature procedure for the projection 
operator P preserves the Fredholm consistency criterion for the discrete problem. The 
auxiliary equation (3.1) describes an iteration at each step of which one needs to 
solve a linear (Poisson) equation with the Neumann boundary condition, i.e.. essen- 
tially in N unknowns. The nullspace of the Laplace operator with the Neumann 
boundary conditions is generated by constants. The discretization of this operator 
gives rise to a matrix that has a one-dimensional kernel. Therefore the bifurcation 
equation (3.2) is a nonlinear problem in only one variable. Consequently, the cost of 
solving (3.2) should be negligible if properly implemented, and the total 
computational expenses are dominated by Eq. (3.1). Nevertheless, the rate of 
convergence of the total system (3.1)-(3.2) can be slowed down considerably if (3.2) 
is solved inexactly, for example, by taking only one iteration 

0 ?I+1 = L’, + PI g(x, Y) -j-CL’, + M’,. ,)I. 

Therefore, for every n, one needs to solve 

(4.1) 

F(L~~+,)=Plg(x,~)--f(u~+, + w,,,)] =o 
until the convergence test for the sequence of ~1’s is satisfied. Clearly. if the starting 
point v is far away from the solution n, then the Picard iterations 

L,k+ 1 = ok n+l n+l +mi+J (4.3) 

are too slow. Therefore, we have chosen the Brent solver ZEROIN [5 ] that does not 
require the derivative F’ and combines reasonable speed of convergence with 
simplicity and robustness. In this way, we were able to achieve a rate of convergence 
for the system (3.1)-(3.2) that is virtually the same as for Eq. (3.1) alone used in 
cases with a zero nullspace, i.e., the Dirichlet boundary conditions. We refer to the 
next section for the experimental evidence. 

The efftciency of solving the auxiliary equation (3.1) depends on the availability of 
Fast Helmholtz Solvers (FHS) on rectangular regions and their extensions to 
arbitrary regions by the capacitance matrix method (CMM). Neumann boundary 
conditions are handled by such solvers without difficulties. There exist two variants 
of the CMM: one in which the capacitance equations aresolved by a direct method. 
and the other in which they are solved by an iterative method, see [ 161. The direct 
CMM is advantageous whenever one solves a sequence of problems that differ only in 
the right-hand sides, as in our case. Therefore the CMMEXP solver of ] 18 ] was 
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chosen. On relatively crude meshes, N < 4,000, except for the preprocessing stage, the 
cost of each step of the iteration (3.1) essentially is that of a FHS, i.e., proportional 
to N log N operations, as reported in the present paper (see the next section). On the 
other hand, for large meshes, N > 4,000, an iterative variant of the capacitance 
matrix method must be used, see Proskurowski [16, 181. 

Thus at each iteration of (3.1) one is solving a Helmholtz equation with constant 
coefficients (the same is true if the scheme includes an operator displacement to 
improve the rate of convergence as in (2.4)). This expense, we repeat, is proportional 
to N log N operations. This compares very favorably with the cost of the Newton 
iterations solved by an adaptive SOR solver. In the examples that we ran, the rate of 
convergence of our scheme was sufficiently fast, and its simplicity outweighed the 
speedup of the possible improved schemes. 

5. NUMERICAL EXPERIMENTS 

In this section we report the results of numerical experiments carried out on the 
DEC 10 computer at the University of Southern California. They are divided into: 
preliminary investigations on simple one-dimensional models, extensive tests on 
square regions, and, finally, experiments on circular regions using the capacitance 
matrix method. We studied first the rate of convergence of the alternative method 
(3.1)-(3.2) on a simple 1D model. We chose the problem 

-u” + f(u) = g(x) in [0, 1] withf(u) = u3, (5.1) 

and the homogeneous Neumann boundary conditions at x = 0 and x = 1. Function 
g(x) was chosen so that the exact solution was u(x) = cos(rrx). For this solution the 
projection Pu was identical to zero on [0, I]. For any function u such that 
t’ = Pu = 0 one is able to solve (3.1) alone by setting v, = 0, for all n = 1, 2,... (if Pu 
is nonzero then (3.1) alone converges to a wrong solution). This we will call 
Method 1 and we shall use it for comparison purposes only. Our aim then became to 
design a method such that the convergence rate of the entire iteration (3.1)-(3.2) was 
close to that of Method 1. Iteration (3.1~(3.2) in which v is computed as according 
to (4.1) is called Method 2, and iteration (3.1~(3.2) in which v in (4.2) is computed 
with the help of the nonlinear solver ZEROIN is called Method 3. 

In Table I we have collected results for these three methods using as initial guess 
random numbers uniformly distributed in [0, I]. The iterations were terminated when 
the l,-norm of the residuals had dropped below le-6. One should also note that 
Eq. (3.1) is singular and its solution is not unique. In all experiments presented in this 
section we chose that solution w, which had a zero projection, Pw, = 0, and thus 
belongs to the space S,. As the results in Table I indicate, Method 2 is very inef- 
ficient whereas the rate of convergence for Method 3 is almost identical with that of 
Method 1. One can conclude that in this implementation the bifurcation equation 
(3.2) does not influence the convergence properties of the auxiliary equation (3.1). 
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TABLE I 

Dependence of the Rate of Convergence on the Mesh Size h = I:‘n 
for the Three Methods Described in the Text 

Method 1 Method 2 Method 3 All 

k II rl12 k Ilrll: k Ilrll~ - Ilell, 

n= 10 16 0.68e-6 Diverges 16 0.72e-6 0.12 
n= 20 12 0.98e-6 60 0.91e-6 I2 0.97e-6 0.59e- I 
n=40 11 0.62e-6 31 0.99e-6 II 0.66e-6 0.29e- I 
n= 80 II 0.29e-6 25 0.82e-6 II 0.32e-6 0.14e-I 
n= 160 10 0.83e-6 23 0.62e-6 10 0.79e-6 O.l2e-2 

Nofe. Here k is the number of iterations. the residual r =g(x) -S(c + u,). and the error 
e = u(exact) - u(computed). 

Therefore in all the subsequent experiments presented in this section we have used the 
scheme described above as Method 3. 

In Table Ia we have compared the results for the previous problem where function 
g(x) was chosen so that the exact solution was A: U(X) = cos(rc.~). and B: 
U(X) = 1 + COS(U), i.e., in the case B the projection Pu was nonzero. As initial guess 
we used the upper solution u, = 2.0. This time we required the accuracy in residuals 
to be le-3. The rate of convergence for our scheme is almost identical for both cases. 
Comparing Table I (Method 3) and Table Ia (case A) one can see clearly that the 
discretization error-and not the convergence tolerance-is the dominating source of 
the total error in the solution. 

The following experiment was modelled on Steuerwalt’s example 121 ]. One seeks 
the positive solution of the problem 

-u”(X) + cl@(x)” - c24) = g(x) in[O, 11. (5.2) 

TABLE Ia 

Comparison of the Rate of Convergence for Solutions with Zero Projection 
(Case A) and with Nonzero Projection (Case B) 

A B 

k llrlll Ilell, k Ilrll? Ilell, 

n= 10 8 0.87e-3 0.12 8 0.62e-3 0.18 
n = 20 7 0.33e-3 0.59e-1 7 0.53e-3 0.9Oe- 1 
n = 40 6 0.47e-3 0.29e- I 7 0.3 le-3 0.44e- 1 
n = 80 6 0.28e-3 0.14e-1 6 0.97e-3 0.22e- 1 
n= 160 6 0.24e-3 0.72e-2 6 0.89e-3 0.1 le-1 
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with homogeneous Neumann boundary conditions at x = 0 and x = 1. In analogy 
with [2 1 ] the constants were cl = 0.2e-8 and c2 = 10, while the function g(x) was 
chosen so that the exact solution was U(X) = 650 + 250 cos(~x). The lower and upper 
solutions were taken as ul = c2 = 10 and u2 = (~2~ + z/c~)“~ = 0.117e + 4, where 
z = max abs( g(x)) in [0, 11. As initial guess we used the upper solution uz. This time 
we required the accuracy in residuals to be le-2. The results in Tables II and IIa 
demonstrate the ability of the method to solve the problem fairly accurately (the last 
column in Table II shows the relative errors) in just a few iterations. The computed 
solution for n = 10 is displayed in Table IIb. It should be mentioned that the 
consecutive iterates converge in an oscillatory manner and not monotonically. 

At this point we turned to 2D problems. As a test problem we selected 

-Lu +f(u) = g(x) for x E [0, 1; 0, 11, (5.3) 

where f(u) = u3. L is the 2D Laplacian, with homogeneous Neumann boundary 
conditions on the sides of the unit rectangle. 

Functions g(x, ~7) were chosen so that the exact solutions were u(x, 11) = 
(cos(rrx) cos(rr~p) + 1) Amp, where the amplitude Amp is a constant 1, 2, and 5. As 
an initial guess we used the upper solution u, = (max(abs(g(x, v)))“’ equal to 3.02 
for Amp = I, 4.69 for Amp = 2, and 10.32 for Amp = 5 (in all the cases the lower 
solution was U, = 0.0). The required accuracy in residuals was le - 3. In our 
experiments tabulated below (see Table III) we have used the HWSCRT fast Poisson 
solver from the program package FISHPACK originated- by Swarztrauber and Sweet. 
see [22]. In the experiments with Amp = 2 and Amp = 5, the iterations initially 
slowly oscillate towards the correct solution without reaching the prescribed 
accuracy, and then diverge sharply. Presumably the nature of this divergence is 
numerical, although we did not further investigate this problem. 

The rate of convergence of the Picard iterations can be improved by the operator 
displacement procedure as formulated by Keller [9] for ODES, and recently 
improved by Pennline [ 151. It should be noted that the solution method employed in 
[9, 15 ] has been used for 1D problems only (knowledge of the Green’s functions is 
required) and is entirely different from our own. In this approach one considers an 
equivalent form of the problem (5.3), namely, 

-Lu + cu +f(u) = cu + g(x), (5.4) 

where the recommended displacement c (a positive constant) is chosen as 

(K) c = max(dfldu)--according to [ 9 ], and 

(P) c = (max(dJ/du) + min(d!/du))/2-according to [ 151. 

For our 2D test example with f(u) = u3 and u(x, y) = Amp(1 + cos XX cos 7~y) the 
values of these displacement parameters based on the known solution were: c = 12 
andc=6forAmp=1,c=48andc=24forAmp=2,andc=300andc=150for 
Amp = 5. The displacements based on the upper and lower solutions and computed 
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TABLE II 

Rate of Convergence for the Simplified Steuerwait Example 

k II4 lIeliz II ell/ll u II 

n= 10 
n = 20 
it=40 
n = 80 
n= 160 

9 0.23e-2 
8 0.49e-2 
8 0.35e-2 
8 0.30e-2 
8 0.28e-2 

0.4 le+2 
O.l9e+2 
0.95ef I 
0.47efl 
0.23e+ 1 

0.62e- I 
0.29e- 1 
O.l4e- I 
0.70e-2 
0.35e-2 

Note. Here k is the number of iterations, r the residuals, and e the errors. 

TABLE lla 

Consecutive Iterations for n = 10 

k II rl12 

I 0.66e+3 
2 0.94e+2 
3 O.l5e+2 
4 0.36et 1 
5 0.83 
6 0.19 
7 0.44e- 1 
8 O.lOe-1 
9 0.23e-2 

10 0.54e-3 
11 O.l3e-3 
12 0.28e-4 
13 0.99e-5 

lIelIz 

O.l2e+3 
0.29e+2 
0.44e+2 
0.40et2 
0.41et2 
0.4let2 
0.4 le+2 
0.4 le+2 
0.4let2 
0.4 le+2 
0.4 le+2 
0.4let2 
0.4 le+2 

Il4l/ll~ll 

0.19 
0.43e- 1 
0.66e- I 
0.6le-1 
0.62e- 1 
0.62e- I 
0.62e- I 
0.62e- 1 
0.62e- I 
0.62e- I 
0.62e- I 
0.62e- I 
0.62e- I 

TABLE llb 

The Computed Solution u(x) for n = 10 

i u(i) 

0 929.528 
1 906.589 
2 861.197 
3 796.219 
4 716.635 
5 629.032 
6. 540.9 17 
7 459.912 
8 392.950 
9 345.549 

10 321.248 
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TABLE III 

Rate of Convergence of a 2D Problem with Amp = I on the Unit Square 
with the Uniform Mesh Size h = l/n in Both Coordinate Directions 

117 

n=m= 10 1 O.l13e+l 
2 0.148e 
3 0.246e- 1 
4 0.529e-2 
5 0. I 16e-2 
6 0.254e-3 

n=m=20 I O.llle+l 
2 0.141 
3 0.239e-1 
4 0.53 le-2 
5 O.l20e-2 
6 0.270e-3 

n=m=40 1 O.llle+l 
2 0.138 
3 0.237e-1 
4 0.536e-2 
5 O.l23e-e 
6 0.283e-3 

0.133 
O.l60e- 1 
0.9 16e-2 
0.434e-2 
0.530e-2 
0.508e-2 
0.123 
O.l85e- I 
0.544e-2 
0.621e-3 
O.l43e-2 
0.1 l9e-2 
0.120 
0.190e- I 
0.463e-2 
0.75 le-3 
0.5 l6e-3 
0.259e-3 

Note. Here k is the number of iterations, r the residuals, and e the errors. 

according to [ 151 were: c = 13.7 for Amp = 1, c = 33.0 for Amp = 2, and c = 160.0 
for Amp = 5 (in addition some ad hoc values of the displacement were also used). A 
series of experiments similar to those in Table III were again run with the fast solver 
HWSCRT (the expenses for solving the Poisson and Helmholtz equations with 
constant coefficients are the same) but with different constants c, and the results are 
tabulated below. As initial guess we used the same upper solutions as above. In 
Tables IIIa, b, and c different values of the displacement c were used to improve the 
rate of convergence. Here k is the number of iterations, e the errors, and t the CPU 
time (in seconds) on the DEC 10 computer. The required accuracy in residuals was 
le - 3. 

As expected the rate of convergence of the iterations slows down considerably 
when the amplitude of the solution is increased from 1 to 2 to 5. The results seem to 
indicate that even for our scheme the optimum value of the displacement parameter 
lies in the vicinity of that recommended by Pennline. It is important to note that the 
optimum is not sharp for c > c-optimal and thus even large errors in the 
overestimation of c do not produce damaging effects on the rate of convergence. 

At this point we decided to make comparison tests using directly the scheme with 
the displacement of the operator, without applying the alternative approch 
(3.1~(3.2), although utilizing our fast solver technique. The results for the problem 
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TABLE IIIa 

Convergence Speed-Up for Amp = I 

tf=m c = 0.0 c= 3.0 c = 6.0 c = 12.0 c = 13.7 r(forc=6) 

10 6 4 5 7 7 0.64 
20 6 4 5 7 7 2.00 
40 6 4 5 7 7 7.72 

TABLE Mb 

Convergence Speed-Up for Amp = 2 

n=m c = 6.0 c= 12.0 c = 24.0 c = 33.0 c = 48.0 llell, r(c=24) 

10 14 8 9 12 14 7.9e-3 I .04 
20 14 8 9 12 14 1.4e-3 3.49 
40 14 8 9 12 14 0.254-3 13.4 

TABLE 111~ 

Convergence Speed-Up for Amp = 5 

tl=tTl c= 100 c= 125 c= 150 c= 160 c=300 Ilell~ t (c = 150) 

10 40 31 36 38 60 4.9e-3 4.75 
20 n 29 34 35 56 0.94e-3 13.7 
40 0 28 33 34 55 4.2e-3h 50.6 

’ The solution starts oscillating without reaching the accuracy in residuals. 
’ Here the discretization error is smaller than the error caused by the convergence tolerance: after 42 

iterations the 2-norm of the error dropped to 0.3e-3. 

(5.4) with the exact solution u(.K, 4’) = S(cos XX cos 71~’ + I), initial guess (upper 
solution) = 10.32, n = m = 10, and the required accuracy in residuals le - 3 are 
tabulated below, see Table IV. The comparison of the results in Tables IIIc and IV 
shows that the differences in the rate of convergence are rather small. On the other 
hand, although the computational cost of one iteration here is some 25% smaller than 
that of Table IIIc, the number of iterations as a function of the parameter c has a 
somewhat sharper minimum (the second divided difference of the number of 
iterations as a function of the displacement c is: 0.062 at c = 150 for Table IIIc, and 
0.084 at c = 125 for Table IV). We additionally performed experiments with a fixed 
value of the displacement (c = 150) but changed our initial guess (upper solution u2). 
For the scheme without the alternative problem approach, the number of iterations 
increased from 29 (for u2 = 10.32) to 47 (for u2 = 15.48), and the iterations diverged 
sharply after only three steps for u2 = 20.64. We must draw the conclusion that the 
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TABLE IV 

Rate of Convergence for the Iterations without the Alternative Problems Technique 

c= 100 125 150 160 175 300 I (c = 150) 

k= Diverges 50 29 33 37 59 2.95 

Nofe. Here k is the number of iterations. 

efficiency of this scheme is substantially affected by an initial guess that is too far off 
or by an inaccurate estimation of the derivative dfldu (all we know is the upper limit 
of the solution and not the solution itself). On the other hand, our scheme based on 
the alternative problem is completely unaffected by the choice of initial guess (the 
rate of convergence remains exactly the same). This can easily be explained by 
observing that the projection operator puts all the residuals into the subspace of the 
kernel right away from the start. 

The final series of experiments were performed for the problem 

-Lu + cu +f(u) = cu + g(x) in D, (5.5) 

where L is the Laplacian,f(u) = u3, with Neumann conditions at the boundary of the 
arbitrary bounded region D. At first the tests were carried out on a circular region D 
with the center at the origin and radius d = 0.375. In the previous example, on the 
unit square we chose g(x, y) so that the exact solution was u(x, y) = 
cos(rrx) cos(lry) + 1. An analogous solution in our circular region would be 
u(x, y) = cos(lrz) + 1, where z = r/d, r2 =x2 + y2. Unfortunately in this case the 
compatibility condition (2.1) is not satisfied, and as a consequence the iterates 
(3.1~(3.2) converge to a wrong solution. Therefore we chose the exact solution to be 
u(x, 4’) =x + 4’ + 1, and computed g(x, y) correspondingly. The compatibility 
condition is now satisfied although we now longer have the homogeneous Neumann 
boundary conditions. In fact at 30 we have u = (u - 1)/d. This fact in no significant 
way influences the results, and thus our scheme generalizes to the nonhomogeneous 
Neumann boundary conditions. It should also be noted that for u = x + JJ + 1 the 
discretization error is zero, which explains the high accuracy in the solution. The 
experiments were run with the capacitance matrix program CMMEXP (see 
Proskurowski [18]), the parameters c were 0 and 1.53, the required accuracy in the 
residuals was le - 6, and as initial guess we used the upper solution u2 = 1.53 (the 
lower solution was 24, = 0,O). 

The rate of convergence is very similar for problems (5.3) and (5.5), as can be seen 
by comparing Tables III and V. In the absence of the discretization error, the limiting 
factor for the accuracy is (for c > 0) the machine tolerance. These results indicate 
that the number of iterations does not change for the mesh sizes under consideration. 
Moreover, an increase of the number of unknowns from 109 to 437 to 1789, i.e., by a 
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TABLE V 

Rate of Convergence for the Problem (5.5) in the Circular Region 

c=o c = 1.53 

1 0.108et 1 
2 0.349e- 1 
3 0.338e-2 
4 0.355e-3 
5 0.373e-4 
6 0.394e-5 
1 0.388e-6 

0.320e- 1 
0.29le-2 
0.423e-3 
O.l05e-3 
O.l30e-3 
O.l27e-3 
O.l28e-3 

O.lOIe+ I 
O.l44e- I 
0.706e-2 
0.404e-4 
0.234e-5 
O.I30e-6 

0.137e-1 
0.667e-3 
0.385e-4 
0.220e-5 
O.l49e-6 
0.638e-7 

- 

Note. Here the mesh size is h = l/n, n = 16, k is the number of iterations. r are the residuals and e 
are the errors. 

TABLE Va 

Rate of Convergence with Different Mesh Sizes 

c=o c = 1.53 

N k II& k Ilell, (c E’l.5) 

n=m=16 109 4 O.l05e-3 3 0.385e-4 1.28 
n=m=32 431 4 0.245e-3 3 0.48Oe-4 5.45 
n=m=64 1789 - - 3 0.591e-4 26.34 

Nofe. Here N is the number of mesh points inside the region, k the number of iterations to reach the 
le-3 accuracy in the residuals r, e is the error, and t is the CPU-time in seconds on the DEC 10 com- 
puter. 

factor of 4.00 and 4.09, results in the increase of the CPU-time of the same order: 
from 1.28 to 5.45 to 26.34, i.e., by a factor of 4.26 and 4.83. 

From the results in Tables III and Va one can conclude that for the mesh sizes 
considered and the tolerance in residuals of the order le - 3, the total computational 
cost per unknown (or mesh point) on the DEC 10 computer is: 

3 to 4 msec for problems in rectangular regions, 
12 to 15 msec for problems in circular regions. 
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